Synthesis and application of circularizable ligation probes.
نویسندگان
چکیده
We describe a PCR-based approach for the synthesis of circularizable ligation probes (CLiPs). CLiPs are single-stranded probes that consist of target-specific ends separated by a noncomplementary "linker" sequence. When hybridized to a target, the CLiP forms a nicked circle that may be sealed by DNA ligase only if the 5' and 3' ends show perfect Watson-Crick base pairing, thus enabling the discrimination of single nucleotide polymorphisms. Primers incorporating target sequence at their 5' end and plasmid sequence at the 3' end were used in a PCR amplification. In addition, the antisense primer was 5' labeled with biotin, and the amplification was performed in the presence of fluorescently labeled dUTP. The resulting PCR product was captured with streptavidin-coated paramagnetic beads, and the top strand, which forms the CLiP, was alkali eluted. This PCR-based method has allowed the synthesis of CLiPs that are larger and more highly labeled than has previously been possible, with ligation efficiencies similar to those of the purest chemically synthesized padlock probes. Ligations performed in the presence of cognate or mismatched sequence were analyzed by denaturing PAGE using a fluorescent DNA sequencer. Genotyping using target immobilized to nylon membranes was also performed. The CLiPs were readily able to distinguish between mutant and wild-type alleles for the common genetic disorder, 21-hydroxylase deficiency. Additionally, CLiPs of different lengths were synthesized and compared.
منابع مشابه
Coupled rolling circle amplification loop-mediated amplification for rapid detection of short DNA sequences.
Circularizable oligonucleotide probes can detect short DNA sequences with single-base resolution at the site of ligation and can be amplified by rolling circle amplification (RCA) using strand displacing polymerases. A secondary amplification scheme was developed that uses the loop-mediated amplification reaction concurrent with RCA to achieve rapid signal development from the starting circular...
متن کاملExpressed protein ligation
The introduction of noncanonical amino acids and biophysical probes into peptides and proteins, and total or segmental isotopic labelling has the potential to greatly aid thedeterminationofprotein structure, functionandprotein– protein interactions. To obtain a peptide as large as possible by solid-phase peptide synthesis, native chemical ligation was introduced to enable synthesis of proteins ...
متن کاملCombining ligation reaction and capillary gel electrophoresis to obtain reliable long DNA probes.
New DNA amplification methods are continuously developed for sensitive detection and quantification of specific DNA target sequences for, e.g. clinical, environmental or food applications. These new applications often require the use of long DNA oligonucleotides as probes for target sequences hybridization. Depending on the molecular technique, the length of DNA probes ranges from 40 to 450 nuc...
متن کاملSemi-synthesis of labeled proteins for spectroscopic applications.
Since the introduction of SPPS by Merrifield in the 60s, peptide chemists have considered the possibility of preparing large proteins. The introduction of native chemical ligation in the 90s and then of expressed protein ligation have opened the way to the preparation of synthetic proteins without size limitations. This review focuses on semi-synthetic strategies useful to prepare proteins deco...
متن کاملA Native Chemical Ligation Handle that Enables the Synthesis of Advanced Activity-Based Probes: Diubiquitin as a Case Study
We present the development of a native chemical ligation handle that also functions as a masked electrophile that can be liberated during synthesis when required. This handle can thus be used for the synthesis of complex activity-based probes. We describe the use of this handle in the generation of linkage-specific activity-based deubiquitylating enzyme probes that contain substrate context and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- BioTechniques
دوره 30 3 شماره
صفحات -
تاریخ انتشار 2001